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Abstract

This paper presents an analytical solution for two-dimensional non-axisymmetric solute transport in a radially convergent flow

field. We applied a Laplace-transformed power series (LTPS) technique to solve the two-dimensional advection-dispersion equation

in cylindrical coordinates. The solution is compared with a numerical solution to evaluate its robustness and accuracy. The ap-

plicable P�eeclet number range of the developed power series solution is also examined. Results show that the LTPS technique can

effectively and accurately handle the two-dimensional radial advection-dispersion equation for a P�eeclet number up to 60. The two-

dimensional power series solution is appropriate for hydrogeologic circumstances where temporally and spatially continuous so-

lutions are demanded.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Tracer tests attempt to determine solute transport

parameters, such as aquifer porosity, dispersion tensor

and hydrogeological properties. A radially convergent

tracer test facilitates the recovery of the injected mass,

reduces the effect of apparent dispersion due to the flow
field, and minimizes the influence of the natural hy-

draulic gradient. Thus, radially convergent tracer tests

are particularly useful where transport, rather than hy-

draulic properties, is desired. Predictive and interpretive

models are available for radially convergent tracer tests

[1,2,12–15,19,20]. These studies are commonly limited to

the analysis of breakthrough curves in the extraction

well, although new sampling technologies are available
for concentration measurements at arbitrary points in

the field [11]. Because of the model complexity, the

analysis is often reduced to an adjusted one-dimensional

solution [17] instead of a more accurate two-dimensional

transport model [22].
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The one-dimensional model generally considers

longitudinal dispersion only. Solutions that consider

transverse dispersion of points between extraction and

injection wells are not available for tracer test analysis.

Unlike a divergent flow tracer test, the convergent flow

one does not have axial symmetry and the transverse

dispersion could be important. The magnitude of the
transverse dispersion coefficient influences both the re-

gion to which the pollution is extended, and the intensity

of the pollution. In view of the importance of deter-

mining transverse dispersion, Chen et al. [3] presented a

two-dimensional mathematical model in cylindrical co-

ordinates that was solved via Laplace transform finite-

difference method to illustrate non-axisymmetric tracer

transport in a radially convergent flow field. In addition,
a curve-fitting method involving a theoretical break-

through curve at an intermediate point was proposed to

evaluate transverse dispersivity, a quantity could not be

determined from a one-dimensional model. The nu-

merical solution developed by Chen et al. [3] has the

propensity to be computationally cumbersome and ex-

pensive and, in the absence of interpolation, can be used

to yield breakthrough curves only at discrete nodal
points. An analytical solution can inherently provide a

spatially continuous concentration distribution, thus is
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extremely useful in generating theoretical breakthrough

curves at any observation point. Beyond its obvious

importance in the studying solute transport for a tracer

test in a radially convergent flow field, the radially

convergent dispersion problem is distinguished by its
being probably the simplest case for which the disper-

sion coefficient is a function of spatially varying velocity

field. Accordingly, the two-dimensional analytical solu-

tion to the radially convergent dispersion problem can

be a valuable means of evaluating the accuracy of

computer codes that simulate two-dimensional solute

transport in porous medium.

It is difficult to derive the analytical solution of the
two-dimensional advection-dispersion equation in cy-

lindrical coordinates due to the dependence of both the

longitudinal and transverse dispersion coefficients on the

spatially varying velocities. To our knowledge, the two-

dimensional analytical solution to the radial advection-

dispersion equation in the real or Laplace domains is

not currently available.

In this paper the problem is approached analytically
to yield temporally and spatially continuous solutions.

We used a Laplace-transformed power series (LTPS)

technique [4] to solve the two-dimensional radial ad-

vection-dispersion equation in cylindrical coordinates.

The analytical power series solution will be compared to

the numerical solution of Chen et al. [3] to examine its

robustness and accuracy and to determine the applicable

ranges of the P�eeclet number. Moreover, the mathemat-
ical characteristics of the solutions are analyzed to il-

lustrate the mathematical and convergence behavior of

the power series functions.
2. Problem formulation

In this paper the problem of two-dimensional tracer

transport in a radially convergent flow field is consid-

ered. Fig. 1 presents the conceptual configuration. For
W

L

Fig. 1. Schematic diagram of a convergent tracer test.
the sake of simplicity, the following assumptions are

made:

1. A vertically oriented extraction well of finite diameter

is located along the vertical axis and fully penetrates a
homogeneous and isotropic aquifer of constant thick-

ness.

2. A steady state, horizontal flow field, radially conver-

gent and axially symmetric with respect to extraction

well, is established prior to the start of tracer injec-

tion.

3. The tracer injection has no influence on the flow field.

Based on above assumptions the seepage velocity V
caused by extraction is described by

V ¼ �A
r

ð1Þ

where A ¼ Q=2pb/ and Q is volumetric rate of water

withdrawal from the extraction well. The symbols b and

/ represent the aquifer thickness and effective porosity,

respectively, while r is the radial distance from the ex-

traction well.

The two-dimensional advection-dispersion equation

in a cylindrical coordinates is [22]

aLA
r

o2C
o2r

þ A
r
oC
or

þ aTA
r3

o2C
o2h

¼ R
oC
ot

ð2Þ

where aL and aT denote the longitudinal and transverse

dispersivities, respectively, R is a retardation factor, t is
time and C is the solute concentration.

The aquifer�s initial tracer concentration is assumed
to be zero before starting the test:

Cðr; h; 0Þ ¼ 0 ð3Þ

The outlet boundary condition describes the solute

transport between the extraction well and aquifer. The

condition which takes into account the finite mixing

volume effect in the well bore is

pr2WhW
oCWðtÞ

ot
¼ 2prW/baL

A
rW

����
���� oCðr; h; tÞor

at r ¼ rW

ð4Þ

where rW is the radius of the extraction well, hW is its

mixing length and CWðtÞ denotes the tracer concentra-

tion in the well [9,12].

The initial condition for (4) states that the well bore

contains no contaminant before pumping:

CWðt ¼ 0Þ ¼ 0: ð5Þ

Additionally, it is reasonable to assume here that

CWðtÞ ¼ CðrW; h; tÞ.
Zlotnik and Logan [22] considered flow and transport

in a ring-shaped domain centered at the extraction well

and bounded by circles of radii r ¼ rI and r� ¼
rL � l ðl � rLÞ in deriving the boundary condition at



Table 1

Dimensionless parameters used in this study

Dimensionless quantity Expression

Time
tD ¼ Qt

ph/ðr2L � r2WÞ
Distance rD ¼ r

rL

Extraction well radius rWD ¼ rW
rL

Injection well radius rID ¼ rI
rL

P�eeclet number Pe ¼ rL
aL

Transverse dispersivity X ¼ aT
aL

Extraction well mixing factor lW ¼ r2WhW
/hðr2L � r2WÞ

Injection well mixing factor lI ¼
rIrLhI

/hðr2L � r2WÞ
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the injection well. The physical assumption is that ad-

vective transport dominates dispersive transport at a

small distance l � 5rI downstream in the discharge zone

of the injection well. Therefore, the boundary condition

including solute transport and the well bore effect at the
injection well was formulated as [22]

aL
A
r
oCðr; h; tÞ

or
þ A

r
Cðr; h; tÞ

¼
A
r CIðtÞ p� d < h < p
0 0 < h < p� d

�
r ¼ r� � rL ð6Þ

where CIðtÞ is the concentration generated in the injec-

tion well and transported downstream through the

narrow and short (a few well diameters) discharge zone

by advection. This small zone with advection-dominated
flow has an aperture angle of 2d. The aperture angle of

this narrow zone at this distance r� � rL � l from the

center of extraction well is

2d ¼ 2arI
rL

ð7Þ

where a is a factor that defines the distortion of distances

between the two most separated stream lines that enter

(or leave) the injection well. This parameter can also

depend on the skin effect for an injection well (Zlotnik
and Logan [22]; Eq. (3)). For a uniform isotropic aquifer

with a well without a skin, a ¼ 2. For skins with high

conductivity, 26 a6 4, whereas for skins with low

conductivity, 0 < a6 2 [7].

It remains to determine the effluent concentration

from the injection well in an ambient horizontal flow.

Effluent concentration from the well with initial dis-

solved tracer mass M0 satisfies a mass balance equation
for the tracer in the borehole, namely

�2arI/bjV ðrLÞjCI ¼ pr2IhI
dCI

dt
ð8Þ

CIð0Þ ¼
M0

pr2IhI
¼ C0 ð9Þ

where hI is the mixing length of injection well (Zlotnik

and Logan [22]; Eq. (6)).

After integration, the known effluent concentration

CIðtÞ can be substituted into boundary condition (6).

The physics of the problem stipulates that C is a single-

valued function in r and h coordinates. In addition, C is
a continuous and symmetrical function across h ¼ 0 and

h ¼ p. Thus, boundary conditions in the transverse

directions are as follows:

oCðr; 0; tÞ
oh

¼ 0 ð10Þ

oCðr; p; tÞ
oh

¼ 0 ð11Þ
Dimensionless variables are defined in a manner

similar to that used by Chen et al. [3]. Following Mo-

ench [12] and substituting the definition given in Table 1

into Eq. (2), the dimensionless transport equation is

presented in the following form:

1

Pe
1

rD

o2C
or2D

þ 1

rD

oC
orD

þ 1

Pe
aD
r3D

o2C

oh2
¼ 2R

1� r2WD

oC
otD

ð12Þ

Consequently, the initial and boundary conditions (3)–

(11) become

CðrD; h; 0Þ ¼ 0 ð13Þ

lW

oCWðtDÞ
otD

¼ 1

Pe
oCðrD; h; tDÞ

orD
at r ¼ rW ð14Þ

CWð0Þ ¼ 0 ð15Þ

1

Pe
oCðrD; h; tDÞ

orD
þ CðrD; h; tDÞ

¼ CIðtDÞ p� d < h < p
0 0 < h < p� d

�
ð16Þ

�CI ¼ lI

dCI

dtD
ð17Þ

CIð0Þ ¼ C0 ð18Þ

oCðrD; 0; tDÞ
oh

¼ 0 ð19Þ

oCðrD; p; tDÞ
oh

¼ 0 ð20Þ

This study adopts the LTPS technique to solve the

governing equation and boundary conditions (12)–(20).

The LTPS has been successfully applied to solve the

one-dimensional radial partial differential equation with

variable-dependent coefficients [4]. The LTPS technique

avoids the need to derive the full analytical solution.
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This technique is parsimonious and easy to code into a

program. The detailed application of the LTPS tech-

nique is presented in Appendix A.
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3. Results and discussion

3.1. Verification of power series solution

The obtained solution is compared with the numeri-
cal solution from the Laplace-transformed finite differ-

ence (LTFD) method [5] to demonstrate the accuracy of

the LPTS solution. A hypothetical tracer test is defined

for the purpose of the comparison. Table 2 provides a
Table 2

Descriptive simulation conditions and transport parameters of the

hypothetical tracer test

Parameter Test 1

Pumping rate (Q), m3 min�1 2

Aquifer thickness (h), m 10

Effective porosity (/), dimensionless 0.2

Radius of extraction well (rW), m 0.1

Extraction well mixing length (hW), m 10

Radius of injection well (rI), m 0.1

Injection well mixing length (hI), m 10

Distance to the injection well (rL), m 25

Injected mass (M), Kg 40

Longitudinal dispersivity (aL), m 25, 2.5, 0.42

P�eeclet Number Pe, dimensionless 1, 10, 60

Transverse dispersivity (aT), m 5, 0.5, 0.084

Dimensionless ratio of dispersivity (X ),
dimensionless

0.2
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Fig. 2. Comparison of breakthrough curves at an observation well

located at r ¼ 5 [m], h ¼ p between the power series solution and

numerical solution for P�eeclet numbers of 1, 2, 5 and 10 in a radially

convergent tracer test.
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Fig. 3. Comparison of breakthrough curves at an observation well

located at r ¼ 5 [m], h ¼ p between the power series solution and

numerical solution for P�eeclet numbers of 20, 40, 60 and 80 in a radially

convergent tracer test.
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Fig. 4. Comparison of breakthrough curves at an observation well

located at r ¼ 5 [m], h ¼ p between the power series solution and

numerical solution for P�eeclet numbers of 100, 150 and 200 in a radially

convergent tracer test.
summary of simulation conditions and transport pa-

rameters for the hypothetical tracer test. Figs. 2–4 plot

breakthrough curves at an observation well located at

r ¼ 5 m, h ¼ p using various P�eeclet numbers, and

compares them to the numerical solution of Chen et al.
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[5]. The extraction well mixing and injection well mixing

factors are set to zero so that well bore mixing exerts

no influence on the breakthrough curves. Concentra-

tion breakthrough curves obtained from the power

series solution agree well with those obtained from the
numerical solution for P�eeclet numbers smaller than 60.

Additionally, the comparison reveals that the break-

through curves obtained with LTPS are shaped roughly

the same as those computed with LTFD for rising limbs

and spreading tails for P�eeclet numbers greater than 60,

but a noticeable discrepancy occurs between the two

solutions at the peak concentrations of the break-

through curves for P�eeclet numbers greater than 60.
The comparison of the two solutions reveals that the

LPTS technique can effectively and accurately solve the

two-dimensional, radial advection-dispersion equation.

However, it is found that the power series method did

not match the numerical solution for P�eeclet numbers

greater than 60. Such conditions correspond to an ad-

vective-dominated solute transport and yield break-

through curves of steep fronts. Transport in a single
fracture or in a particularly homogeneous granular

aquifer may involve large P�eeclet numbers [18]. Efforts to

determine solution correctness for P�eeclet numbers

greater than 60 will be addressed in a future study.
Table 3

The values of Z2ðrD; n; sÞ for various rD and n at s ¼ 3 (Pe ¼ 1)

n rD ¼ 0:2 rD ¼ 0:4 rD ¼ 0:

0 2.011� 1012 4.156� 1012 6.765

1 3.298� 1012 5.563� 1012 8.165

2 8.155� 1012 9.896� 1012 1.286

3 2.431� 1012 3.482� 1012 7.013

4 5.608� 1012 2.439� 1012 1.162

5 1.537� 1012 4.535� 1012 1.964

6 4.218� 1012 8.213� 1012 3.065

7 1.160� 1012 1.468� 1012 4.248

8 3.193� 1012 2.623� 1012 5.892

9 8.802� 1012 4.685� 1012 8.218

10 2.428� 1012 8.363� 1012 1.141

11 6.702� 1012 1.493� 1012 1.583

12 1.850� 1012 2.664� 1012 2.193

13 5.111� 1012 4.756� 1012 3.037

14 1.412� 1012 8.488� 1012 4.204

15 3.901� 1012 )1.006� 1012 )5.975
16 1.079� 1012 2.704� 1012 8.045

17 2.982� 1012 4.826� 1012 1.113

18 8.243� 1012 8.613� 1012 1.539

19 2.279� 1012 1.537� 1012 2.127

20 6.302� 1012 2.744� 1012 2.941

21 1.743� 1012 4.898� 1012 4.065

22 4.820� 1012 8.742� 1012 5.618

23 1.333� 1012 1.560� 1012 7.765

24 3.687� 1012 2.785� 1012 1.073

25 1.020� 1012 4.972� 1012 1.483

26 2.821� 1012 8.874� 1012 2.050

27 7.803� 1012 1.584� 1012 2.832

28 2.159� 1012 2.828� 1012 3.914

29 5.971� 1012 5.047� 1012 5.408

30 1.652� 1012 9.009� 1012 7.472
3.2. Mathematical behavior of power series functions

The LPTS solution derived from the Appendix A

includes two new functions. These two functions are

in the form of infinite series, terms of which can be
straightforwardly evaluated. We have to consider,

however, the number of terms needed to produce ac-

curate results. Chen et al. [4] illustrated that, for a fixed

tolerance, the required numbers to be summed generally

increase with the P�eeclet numbers.

We have performed the computation for various rD
and n at fixed s ¼ 3 of the two new functions to examine

the mathematical characteristics of the two new infinite
series (some part of computational results are provided

in the Appendix B). The values of the function

Z1ðrD; n; sÞ increase with increasing rD and decrease with

increasing n. The function values increase as P�eeclet
number increases. The values of oZ1ðrD; n; sÞ=orD in-

crease as rD increases and decrease as n increases. For

a P�eeclet number of unity, however, the values of

oZ1ðrD; n; sÞ=orD increase with n at rD ¼ 1. The plot
of Z2ðrD; n; sÞ versus rD behaves differently from that of

Z1ðrD; n; sÞ : Z2ðrD; n; sÞ decreases with increasing rD and

behaves irregularly with respect to n. For example,

Z2ðrD; n; sÞ increases with n at rD ¼ 0:2, however, no
6 rD ¼ 0:8 rD ¼ 1:0

� 1012 1.045� 1012 1.633� 1012

� 1012 1.195� 1012 1.819� 1012

� 1012 1.837� 1012 2.852� 1012

� 1012 1.412� 1012 2.725� 1012

� 1012 1.383� 1012 )1.138� 1012

� 1012 6.649� 1012 )5.521� 1012

� 1012 1.597� 1012 1.308� 1012

� 1012 1.749� 1012 1.043� 1012

� 1012 1.895� 1012 5.321� 1012

� 1012 2.301� 1012 8.057� 1012

� 1012 2.689� 1012 8.318� 1012

� 1012 3.132� 1012 8.608� 1012

� 1012 3.636� 1012 8.733� 1012

� 1012 4.216� 1012 8.844� 1012

� 1012 4.882� 1012 8.940� 1012

� 1012 )1.092� 1012 )1.065� 1012

� 1012 6.529� 1012 9.091� 1012

� 1012 7.544� 1012 9.152� 1012

� 1012 8.713� 1012 9.205� 1012

� 1012 1.006� 1012 9.252� 1012

� 1012 1.161� 1012 9.294� 1012

� 1012 1.340� 1012 9.331� 1012

� 1012 1.546� 1012 9.365� 1012

� 1012 1.783� 1012 9.396� 1012

� 1012 2.056� 1012 9.423� 1012

� 1012 2.371� 1012 9.448� 1012

� 1012 2.733� 1012 9.472� 1012

� 1012 3.151� 1012 9.493� 1012

� 1012 3.632� 1012 9.513� 1012

� 1012 4.187� 1012 9.531� 1012

� 1012 4.826� 1012 9.548� 1012



Table 4

The values of Z2ðrD; n; sÞ for various rD and n at s ¼ 3 (Pe ¼ 10)

n rD ¼ 0:2 rD ¼ 0:4 rD ¼ 0:6 rD ¼ 0:8 rD ¼ 1:0

0 2.440� 1012 9.286� 1012 3.875� 1012 1.897� 1012 1.077� 1012

1 4.296� 1012 1.542� 1012 6.503� 1012 3.219� 1012 1.840� 1012

2 1.941� 1012 8.793� 1012 4.112� 1012 2.122� 1012 1.239� 1012

3 4.855� 1012 2.732� 1012 1.468� 1012 8.077� 1012 4.876� 1012

4 5.203� 1012 7.234� 1012 3.858� 1012 2.283� 1012 1.442� 1012

5 1.405� 1012 1.103� 1012 6.495� 1012 4.234� 1012 2.827� 1012

6 3.871� 1012 1.379� 1012 8.004� 1012 5.801� 1012 4.135� 1012

7 1.079� 1012 2.285� 1012 1.463� 1012 1.198� 1012 9.194� 1012

8 3.001� 1012 1.814� 1012 )1.902� 1012 )2.072� 1012 )1.729� 1012

9 8.350� 1012 3.677� 1012 9.640� 1012 5.640� 1012 5.049� 1012

10 2.319� 1012 6.750� 1012 1.534� 1012 1.093� 1012 1.079� 1012

11 6.435� 1012 1.237� 1012 3.938� 1012 4.288� 1012 4.693� 1012

12 1.784� 1012 2.232� 1012 1.105� 1012 )4.840� 1012 )6.070� 1012

13 4.946� 1012 4.049� 1012 1.970� 1012 )6.879� 1012 )1.188� 1012

14 1.370� 1012 7.324� 1012 2.880� 1012 2.646� 1012 4.413� 1012

15 )8.670� 1012 )1.007� 1012 )7.456� 1012 )1.996� 1012 )3.356� 1012

16 1.051� 1012 2.383� 1012 5.792� 1012 1.844� 1012 )3.015� 1012

17 2.911� 1012 4.290� 1012 8.185� 1012 3.655� 1012 )1.010� 1012

18 8.061� 1012 7.713� 1012 1.153� 1012 4.720� 1012 )5.154� 1012

19 2.232� 1012 1.386� 1012 1.620� 1012 6.011� 1012 3.659� 1012

20 6.179� 1012 2.488� 1012 2.273� 1012 6.976� 1012 2.411� 1012

21 1.710� 1012 4.464� 1012 3.184� 1012 8.250� 1012 2.502� 1012

22 4.735� 1012 8.005� 1012 4.454� 1012 9.733� 1012 2.652� 1012

23 1.311� 1012 1.435� 1012 6.223� 1012 1.146� 1012 5.241� 1012

24 3.628� 1012 2.571� 1012 8.686� 1012 1.347� 1012 4.681� 1012

25 1.004� 1012 4.606� 1012 1.211� 1012 1.580� 1012 4.761� 1012

26 2.780� 1012 8.248� 1012 1.688� 1012 1.851� 1012 4.878� 1012

27 7.693� 1012 1.477� 1012 2.350� 1012 2.166� 1012 5.018� 1012

28 2.129� 1012 2.643� 1012 3.271� 1012 2.531� 1012 5.136� 1012

29 5.894� 1012 4.730� 1012 4.550� 1012 2.955� 1012 5.252� 1012

30 1.631� 1012 8.463� 1012 6.325� 1012 3.447� 1012 5.363� 1012
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definite rule can be concluded for Z2ðrD; n; sÞ versus n at

other values of rD. Notably, an abnormally large value

appears at n ¼ 15 for Z2ðrD; n; sÞ and its first derivative,

oZ2ðrD; n; sÞ=orD. We have scrutinized thoroughly the

computer program and confirm that this extraordinary

value dose not result from any computation errors but

from the inherent mathematical characteristic of the new

power series function. Understanding the characteristic
of abnormality involves a complicated mathematical

analysis, which we do not pursue here. Tables 3–8 also

show that the behavior of the developed two functions

are fundamentally different from that of the special Airy

function solution for the one-dimensional radial advec-

tion-dispersion equation.
4. Conclusions

This work presents a novel Laplace transform power

series method to solve the two-dimensional variable-

dependent advection-dispersion differential equation in

cylindrical coordinates, accounting for non-axisymmet-

rical transport during a convergent radial tracer test.

The exact analytical solution in Laplace transform do-
main is derived. The new solution is compared with the

numerical solution to verify its accuracy. Results show

that the two solutions produce the same results for

P�eeclet numbers smaller than 60. Notably, it is found that

the two solutions yield a noticeable difference at an in-

termediate time for P�eeclet numbers greater than 60. We

suggest further mathematical analysis and verification of

the new solution for P�eeclet numbers greater than 60 are
needed. The novel two-dimensional power series solu-

tion is useful for quantitative hydrogeologic problems

where temporally and spatially continuous solutions are

demanded.
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Table 5

The values of Z2ðrD; n; sÞ for various rD and n at s ¼ 3 (Pe ¼ 60)

n rD ¼ 0:2 rD ¼ 0:4 rD ¼ 0:6 rD ¼ 0:8 rD ¼ 1:0

0 7.424� 1012 4.172� 1012 2.934� 1012 2.562� 1012 2.760� 1012

1 2.148� 1012 1.229� 1012 8.689� 1012 7.608� 1012 8.208� 1012

2 4.393� 1012 2.654� 1012 1.908� 1012 1.683� 1012 1.824� 1012

3 )7.808� 1012 )5.157� 1012 )3.809� 1012 )3.405� 1012 )3.717� 1012

4 1.395� 1012 1.040� 1012 7.976� 1012 7.259� 1012 8.007� 1012

5 1.265� 1012 1.096� 1012 8.823� 1012 8.217� 1012 9.186� 1012

6 )1.725� 1012 )1.786� 1012 )1.524� 1012 )1.460� 1012 )1.659� 1012

7 )2.387� 1012 )3.023� 1012 )2.762� 1012 )2.734� 1012 )3.166� 1012

8 9.386� 1012 1.485� 1012 1.466� 1012 1.508� 1012 1.785� 1012

9 )6.929� 1012 )1.406� 1012 )1.514� 1012 )1.624� 1012 )1.971� 1012

10 )1.634� 1012 )4.306� 1012 )5.102� 1012 )5.739� 1012 )7.161� 1012

11 )3.327� 1012 )1.159� 1012 )1.523� 1012 )1.805� 1012 )2.321� 1012

12 )1.131� 1012 )5.585� 1012 )8.209� 1012 )1.029� 1012 )1.368� 1012

13 )7.329� 1012 )6.020� 1012 )9.969� 1012 )1.328� 1012 )1.830� 1012

14 3.234� 1012 )2.984� 1012 )5.606� 1012 )7.966� 1012 )1.141� 1012

15 )4.565� 1012 )5.393� 1012 )1.157� 1012 )1.762� 1012 )2.630� 1012

16 5.215� 1012 )6.696� 1012 )1.652� 1012 )2.705� 1012 )4.218� 1012

17 1.607� 1012 )1.621� 1012 )4.624� 1012 )8.176� 1012 )1.335� 1012

18 4.624� 1012 2.896� 1012 9.607� 1012 1.841� 1012 3.156� 1012

19 1.313� 1012 )1.323� 1012 )5.129� 1012 )1.069� 1012 )1.929� 1012

20 3.739� 1012 )9.048� 1012 )4.123� 1012 )9.380� 1012 )1.785� 1012

21 1.060� 1012 4.659� 1012 2.506� 1012 6.243� 1012 1.256� 1012

22 2.999� 1012 1.296� 1012 8.262� 1012 2.261� 1012 4.821� 1012

23 8.470� 1012 )6.716� 1012 )5.101� 1012 )1.539� 1012 )3.484� 1012

24 2.388� 1012 5.900� 1012 5.296� 1012 1.766� 1012 4.255� 1012

25 6.722� 1012 1.113� 1012 1.199� 1012 4.430� 1012 1.138� 1012

26 1.890� 1012 1.467� 1012 1.893� 1012 7.775� 1012 2.135� 1012

27 5.307� 1012 5.037� 1012 1.470� 1012 6.730� 1012 1.979� 1012

28 1.489� 1012 1.808� 1012 2.005� 1012 1.025� 1012 3.235� 1012

29 4.173� 1012 2.061� 1012 1.515� 1012 8.677� 1012 2.943� 1012

30 1.168� 1012 3.187� 1012 1.651� 1012 1.062� 1012 3.878� 1012

J.-S. Chen et al. / Advances in Water Resources 26 (2003) 1113–1124 1119
Appendix A

First, proceeding with the Laplace transform of Eq.

(12) and its associated boundary conditions (13)–(20),

with respect to tD, we obtain
1

Pe
1

rD

o2G
or2D

þ 1

rD

oG
orD

þ 1

Pe
aD
r3D

o2G

oh2
¼ 2R

1� r2WD

sG ðA:1Þ

lWsG ¼ 1

Pe
oGðrD; h; sÞ

orD
at r ¼ rW ðA:2Þ

1

Pe
oGðrD; h; sÞ

orD
þ GðrD; h; sÞ

¼ GIðsÞ p� d < h < p
0 0 < h < p� d

�
at r ¼ rI ðA:3Þ

�GIðsÞ ¼ lI½sGIðsÞ � C0� ðA:4Þ

oGðrD; 0; sÞ
oh

¼ 0 ðA:5Þ

oGðrD; p; sÞ ¼ 0 ðA:6Þ

oh
where s denotes the Laplace transform parameter and G
represents the Laplace transform of C, as defined by

GðrD; h; sÞ ¼
Z 1

0

CðrD; h; tDÞe�stDdtD ðA:7Þ

GIðsÞ ¼
Z 1

0

CIðtDÞe�stDdtD ðA:8Þ

The finite Fourier cosine transform with respect to h of

(A.1)–(A.6) gives

1

Pe
1

rD

d2W
dr2D

þ 1

rD

dW
drD

� 1

Pe
aDn2

r3D

�
þ 2R
1� r2WD

s
�
W ¼ 0

ðA:9Þ

lWsW ¼ 1

Pe
oW ðrD; n; sÞ

orD
at r ¼ rW ðA:10Þ

1

Pe
oW ðrD; n; sÞ

orD
þ W ðrD; n; sÞ ¼ F ðnÞ ðA:11Þ

where

F ðnÞ ¼
GIðsÞd; n¼ 0

GIðsÞ ð�1Þn sinnd
n

h i
; n¼ 1;2;3 . . .

(
GIðsÞ ¼

lIC0

1þlIs



Table 6

The values of oZ2ðrD; n; sÞ=orD for various rD and n at s ¼ 3 (Pe ¼ 1)

n rD ¼ 0:2 rD ¼ 0:4 rD ¼ 0:6 rD ¼ 0:8 rD ¼ 1:0

0 1.021� 1012 1.151� 1012 1.507� 1012 2.270� 1012 3.766� 1012

1 )2.070� 1012 1.485� 1012 1.706� 1012 3.756� 1012 7.102� 1012

2 )1.487� 1012 7.485� 1012 7.594� 1012 1.538� 1012 2.790� 1012

3 )7.842� 1012 )1.633� 1012 )8.785� 1012 )8.487� 1012 )1.184� 1012

4 )2.959� 1012 )3.581� 1012 )1.120� 1012 )6.144� 1012 )5.904� 1012

5 )1.045� 1012 )7.988� 1012 )1.636� 1012 )2.491� 1012 5.105� 1012

6 )3.521� 1012 )1.746� 1012 )2.954� 1012 )7.569� 1012 )1.180� 1012

7 )1.149� 1012 )3.681� 1012 )4.795� 1012 )9.177� 1012 2.268� 1012

8 )3.665� 1012 )7.589� 1012 )7.751� 1012 )1.508� 1012 )4.290� 1012

9 )1.148� 1012 )1.537� 1012 )1.216� 1012 )1.969� 1012 )4.728� 1012

10 )3.550� 1012 )3.069� 1012 )1.881� 1012 )2.540� 1012 )5.194� 1012

11 )1.085� 1012 )6.062� 1012 )2.878� 1012 )3.247� 1012 )5.798� 1012

12 )3.288� 1012 )1.186� 1012 )4.364� 1012 )4.112� 1012 )6.417� 1012

13 )9.888� 1012 )2.304� 1012 )6.567� 1012 )5.167� 1012 )7.015� 1012

14 )2.955� 1012 )4.445� 1012 )9.815� 1012 )6.448� 1012 )7.622� 1012

15 )8.781� 1012 )7.276� 1012 4.898� 1012 6.787� 1012 5.366� 1012

16 )2.597� 1012 )1.629� 1012 )2.158� 1012 )9.880� 1012 )8.844� 1012

17 )7.650� 1012 )3.097� 1012 )3.177� 1012 )1.215� 1012 )9.460� 1012

18 )2.245� 1012 )5.867� 1012 )4.662� 1012 )1.487� 1012 )1.008� 1012

19 )6.568� 1012 )1.108� 1012 )6.816� 1012 )1.815� 1012 )1.070� 1012

20 )1.916� 1012 )2.085� 1012 )9.935� 1012 )2.207� 1012 )1.132� 1012

21 )5.573� 1012 )3.915� 1012 )1.444� 1012 )2.678� 1012 )1.194� 1012

22 )1.617� 1012 )7.334� 1012 )2.094� 1012 )3.240� 1012 )1.256� 1012

23 )4.684� 1012 )1.371� 1012 )3.030� 1012 )3.911� 1012 )1.318� 1012

24 )1.354� 1012 )2.556� 1012 )4.376� 1012 )4.712� 1012 )1.381� 1012

25 )3.905� 1012 )4.759� 1012 )6.307� 1012 )5.666� 1012 )1.443� 1012

26 )1.125� 1012 )8.845� 1012 )9.074� 1012 )6.800� 1012 )1.506� 1012

27 )3.235� 1012 )1.641� 1012 )1.304� 1012 )8.149� 1012 )1.568� 1012

28 )9.290� 1012 )3.041� 1012 )1.870� 1012 )9.750� 1012 )1.631� 1012

29 )2.664� 1012 )5.628� 1012 )2.678� 1012 )1.165� 1012 )1.694� 1012

30 )7.631� 1012 )1.040� 1012 )3.832� 1012 )1.390� 1012 )1.756� 1012
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where n denotes the finite Fourier cosine transform pa-

rameter and W ðrD; n; sÞ represents the finite Fourier

cosine transform of GðrD; h; sÞ, as defined by

W ðrD; n; sÞ ¼
Z p

0

GðrD; h; sÞ cosðnhÞdh ðA:12Þ

Such a transform is advantageous in that the inversion is

directly given by the following formula [16]:

GðrD; h; sÞ ¼
1

p
W ðrD; 0; sÞ þ

2

p

X1
n¼1

W ðrD; n; sÞ cosðnhÞ

ðA:13Þ

The transformed ordinary differential equation (A.9)

can be directly solved using the power series method.

The governing equation (A.9), however, involves an

advection term that generally leads to a numerical error

in numerical calculation for large P�eeclet numbers. Chen
et al. [4] suggested that the power series technique, with

a change of variables to eliminate the first spatial de-

rivative, is capable of solving the radial dispersion

problem over a wide range of P�eeclet numbers. There-

fore, a change of variables is used to eliminate the first

spatial derivative and convert Eq. (A.9) to
1

Pe
d2Z
dr2D

� Pe
4

�
þ 1

Pe
Xn2

r2D
þ 2rDR
1� r2WD

�
Z ¼ 0 ðA:14Þ

where

Z ¼ exp
Pe
2
ðrD

�
� 1Þ

�
W

The boundary conditions (A.10) and (A.11) are in terms

of Z,

1

Pe
dZ
drD

� 1

2

�
þ lWs

�
Z ¼ 0 ðA:15Þ
and
1

Pe
dW ðrD; n; sÞ

drD
þ W ðrD; n; sÞ ¼ F ðnÞ; ðA:16Þ
respectively.

The governing equation (A.14) is amenable to solu-

tion using the power series method [8]. While using the

power series method to solve the transformed differen-

tial equation (A.14), one must consider that whether the

variable-dependent coefficients of governing equation



Table 7

The values of oZ2ðrD; n; sÞ=orD for various rD and n at s ¼ 3 (Pe ¼ 10)

n rD ¼ 0:2 rD ¼ 0:4 rD ¼ 0:6 rD ¼ 0:8 rD ¼ 1:0

0 1.732� 1012 6.280� 1012 2.925� 1012 1.579� 1012 9.733� 1012

1 2.421� 1012 1.071� 1012 5.074� 1012 2.758� 1012 1.707� 1012

2 )1.469� 1012 2.090� 1012 1.201� 1012 6.695� 1012 4.198� 1012

3 )2.491� 1012 )9.155� 1012 )4.691� 1012 )2.688� 1012 )1.722� 1012

4 )1.993� 1012 6.235� 1012 3.743� 1012 2.260� 1012 1.492� 1012

5 )9.838� 1012 1.695� 1012 1.521� 1012 9.856� 1012 6.771� 1012

6 )3.370� 1012 )7.290� 1012 4.882� 1012 3.516� 1012 2.536� 1012

7 )1.101� 1012 )4.133� 1012 )1.113� 1012 )8.347� 1012 )6.363� 1012

8 )3.514� 1012 )5.203� 1012 1.026� 1012 9.125� 1012 7.423� 1012

9 )1.103� 1012 )1.234� 1012 3.316� 1012 3.856� 1012 3.373� 1012

10 )3.418� 1012 )2.541� 1012 1.070� 1012 2.399� 1012 2.273� 1012

11 )1.047� 1012 )5.085� 1012 1.115� 1012 3.610� 1012 3.719� 1012

12 )3.179� 1012 )1.008� 1012 )2.757� 1012 9.687� 1012 1.279� 1012

13 )9.578� 1012 )1.975� 1012 )4.248� 1012 1.849� 1012 2.558� 1012

14 )2.867� 1012 )3.842� 1012 )6.584� 1012 1.629� 1012 2.617� 1012

15 )1.066� 1012 )6.291� 1012 )3.292� 1012 )7.218� 1012 )1.087� 1012

16 )2.528� 1012 )1.428� 1012 )1.527� 1012 )7.451� 1012 )4.285� 1012

17 )7.455� 1012 )2.732� 1012 )2.285� 1012 )6.470� 1012 )4.746� 1012

18 )2.190� 1012 )5.206� 1012 )3.402� 1012 )7.658� 1012 3.915� 1012

19 )6.415� 1012 )9.881� 1012 )5.043� 1012 )1.048� 1012 )1.488� 1012

20 )1.873� 1012 )1.869� 1012 )7.444� 1012 )1.235� 1012 )1.853� 1012

21 )5.454� 1012 )3.525� 1012 )1.095� 1012 )1.529� 1012 )8.763� 1012

22 )1.584� 1012 )6.630� 1012 )1.605� 1012 )1.889� 1012 )6.922� 1012

23 )4.591� 1012 )1.244� 1012 )2.346� 1012 )2.325� 1012 )5.172� 1012

24 )1.328� 1012 )2.328� 1012 )3.418� 1012 )2.854� 1012 )5.831� 1012

25 )3.834� 1012 )4.349� 1012 )4.970� 1012 )3.491� 1012 )6.242� 1012

26 )1.105� 1012 )8.107� 1012 )7.209� 1012 )4.259� 1012 )6.697� 1012

27 )3.179� 1012 )1.509� 1012 )1.043� 1012 )5.181� 1012 )7.090� 1012

28 )9.135� 1012 )2.803� 1012 )1.507� 1012 )6.288� 1012 )7.565� 1012

29 )2.621� 1012 )5.201� 1012 )2.174� 1012 )7.615� 1012 )8.040� 1012

30 )7.512� 1012 )9.636� 1012 )3.129� 1012 )9.202� 1012 )8.521� 1012
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are analytical or not. There are two different type power

series solutions for the governing equation (A.14): Case

1, the coefficient is analytical for n ¼ 0; and Case 2, the

coefficient is not analytical for n > 0. Thus, the solution

is obtained by direct application of the power series

method for Case 1. The other solution is yielded using

the extended power series method, or the Frobenius

method, for Case 2 [10,21]. The procedures for the two
approaches are described as follows:

Case 1: n ¼ 0, the coefficient is analytical

Rewriting the governing equation (A.14) for n ¼ 0

yields
1

Pe
d2Z
dr2D

� Pe
4

�
þ 2rDR
1� r2WD

�
Z ¼ 0 ðA:17Þ
First, the solution of Eq. (A.17) is assumed in the form

of a power series with unknown coefficients,
ZðrD; 0; sÞ ¼
X1
m¼0

amrmD ðA:18Þ
Termwise differentiation gives
dZðrD; 0; sÞ
drD

¼
X1
1

mamrm�1
D ðA:19Þ
dZðrD; 0; sÞ
dr2D

¼
X1
2

mðm� 1Þamrm�2
D ðA:20Þ

These expressions are substituted into Eq. (A.17),
yielding

1

Pe

X1
2

mðm� 1Þamrm�2
D � Pe

4

�
þ 2Rs
1� r2WD

rD

�X1
0

amrmD ¼ 0

ðA:21Þ

By shifting summation indices, we obtain

1

Pe

X1
0

ðmþ 2Þðmþ 1Þamþ2rmD � Pe
4

X1
0

amrmD

� 2Rs
1� r2WD

X1
1

am�1rmD ¼ 0 ðA:22Þ

The coefficient of each power of rD to set to zero. For

m ¼ 0 this yields



Table 8

The values of oZ2ðrD; n; sÞ=orD for various rD and n at s ¼ 3 (Pe ¼ 60)

n rD ¼ 0:2 rD ¼ 0:4 rD ¼ 0:6 rD ¼ 0:8 rD ¼ 1:0

0 2.308� 1012 1.345� 1012 9.778� 1012 8.812� 1012 9.779� 1012

1 4.123� 1012 2.435� 1012 1.779� 1012 1.607� 1012 1.786� 1012

2 )1.326� 1012 )8.147� 1012 )6.037� 1012 )5.491� 1012 )6.127� 1012

3 )4.154� 1012 )2.728� 1012 )2.069� 1012 )1.904� 1012 )2.139� 1012

4 1.915� 1012 1.380� 1012 1.081� 1012 1.012� 1012 1.148� 1012

5 )5.434� 1012 )4.409� 1012 )3.602� 1012 )3.441� 1012 )3.951� 1012

6 )1.438� 1012 )1.347� 1012 )1.157� 1012 )1.134� 1012 )1.322� 1012

7 )5.281� 1012 )5.842� 1012 )5.330� 1012 )5.380� 1012 )6.385� 1012

8 )5.551� 1012 )7.421� 1012 )7.248� 1012 )7.573� 1012 )9.172� 1012

9 )3.531� 1012 )5.817� 1012 )6.134� 1012 )6.662� 1012 )8.257� 1012

10 3.854� 1012 8.217� 1012 9.432� 1012 1.070� 1012 1.360� 1012

11 2.577� 1012 6.835� 1012 8.607� 1012 1.023� 1012 1.339� 1012

12 )5.255� 1012 )1.766� 1012 )2.459� 1012 )3.078� 1012 )4.154� 1012

13 2.224� 1012 1.844� 1012 2.859� 1012 3.785� 1012 5.281� 1012

14 1.772� 1012 1.805� 1012 3.139� 1012 4.410� 1012 6.379� 1012

15 )1.965� 1012 )1.605� 1012 )3.152� 1012 )4.720� 1012 )7.094� 1012

16 )1.151� 1012 1.628� 1012 3.633� 1012 5.821� 1012 9.114� 1012

17 )3.516� 1012 8.386� 1012 2.140� 1012 3.682� 1012 6.020� 1012

18 )1.081� 1012 9.649� 1012 2.833� 1012 5.252� 1012 8.989� 1012

19 )3.280� 1012 3.902� 1012 1.325� 1012 2.657� 1012 4.771� 1012

20 )9.854� 1012 3.476� 1012 1.372� 1012 2.987� 1012 5.640� 1012

21 )2.946� 1012 2.081� 1012 9.602� 1012 2.275� 1012 4.528� 1012

22 )8.769� 1012 4.244� 1012 2.300� 1012 5.953� 1012 1.251� 1012

23 )2.599� 1012 1.747� 1012 1.116� 1012 3.167� 1012 7.047� 1012

24 )7.677� 1012 4.701� 1012 3.560� 1012 1.110� 1012 2.620� 1012

25 )2.260� 1012 9.379� 1012 8.490� 1012 2.918� 1012 7.320� 1012

26 )6.633� 1012 )2.294� 1012 )2.454� 1012 )9.324� 1012 )2.491� 1012

27 )1.941� 1012 1.181� 1012 1.547� 1012 6.514� 1012 1.857� 1012

28 )5.668� 1012 1.345� 1012 2.718� 1012 1.272� 1012 3.879� 1012

29 )1.651� 1012 )1.270� 1012 )8.639� 1012 )4.505� 1012 )1.471� 1012

30 )4.798� 1012 )5.915� 1012 )9.794� 1012 )5.705� 1012 )2.000� 1012
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a2 ¼
Pe2

8
a0 ðA:23Þ

and in general and when m ¼ 1; 2; 3; . . .

amþ2 ¼
Pe

ðmþ 2Þðmþ 1Þ
Pe
4
am

�
þ 2Rs
1� r2WD

am�1

�
ðA:24Þ

By inserting the value for the coefficients into (A.18), the

general solution is obtained

ZðrD; 0; sÞ ¼ b1Z1ðrD; 0; sÞ þ b2Z2ðrD; 0; sÞ ðA:25Þ

where Z1ðrD; 0; sÞ and Z2ðrD; 0; sÞ are two linearly inde-

pendent functions which are of the form of (A.18), with

coefficients determined by (A.23) and (A.24) and set

a0 ¼ 1, a1 ¼ 0 or a0 ¼ 0, a1 ¼ 1, respectively.

Case 2: n > 0, the coefficient is not analytical

The governing equation (A.14), except for n ¼ 0,

subjected to boundary conditions (A.15) and (A.16) is

solved using the Frobenius power series method. First,

assume the solution of equation (A.14) has the form of

power series with undetermined coefficients,

Z ¼
X1
m¼0

amrmþr
D ðA:26Þ
and insert this series and the series obtained by termwise

differentiation,

dZ
drD

¼
X1
m¼0

ðmþ rÞamrmþr�1
D ðA:27Þ

d2Z
drD

¼
X1
m¼0

ðmþ rÞðmþ r � 1Þamrmþr�2
D ðA:28Þ

into Eq. (A.14). This yields:

Pe � r2D
X1
m¼0

ðmþ rÞðmþ r � 1Þamrmþr�2
D

� Xn2

Pe

�
þ Pe

4
r2D þ 2Rs

1� r2WD

r3D

�X1
m¼0

amrmþr
D ¼ 0

ðA:29Þ

By shifting summation indices, we obtain

Pe
X1
m¼0

ðmþ rÞðmþ r � 1Þamrmþr
D � Xn2

Pe

X1
m¼0

amrmþr
D

� Pe
4

X1
m¼2

am�2rmþr
D � 2Rs

1� r2WD

X1
m¼3

am�3rmþr
D ¼ 0

ðA:30Þ
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Equating the coefficient of each power of rD to zero

yields a general formula for all m.

1

Pe
rðr � 1Þa0 �

Xn2

Pe
a0 ¼ 0 ðm ¼ 0Þ ðA:31Þ

1

Pe
ðr þ 1Þra1 �

Xn2

Pe
a1 ¼ 0 ðm ¼ 1Þ ðA:32Þ

1

Pe
ðr þ 2Þðr þ 1Þa2 �

Xn2

Pe
a2 �

Pe
4
a0 ¼ 0 ðm ¼ 2Þ

ðA:33Þ

1

Pe
ðr þ mÞðr þ m� 1Þam � Xn2

Pe
am � Pe

4
am�2

� 2Rs
1� r2WD

am�3 ¼ 0 ðm ¼ 3; 4; 5; . . .Þ ðA:34Þ

From (A.31), the indicial equation is obtained

rðr � 1Þ � Xn2 ¼ 0 ðA:35Þ
The roots are r1 ¼ 1þ

ffiffiffiffiffiffiffiffiffiffiffi
1þ4Xn2

p
2

and r2 ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffi
1þ4Xn2

p
2

, respec-

tively.

Eqs. (A.32)–(A.34) yield

a1 ¼ 0 ðA:36Þ

a2 ¼
Pe2

4½ðr þ 2Þðr þ 1Þ � Xn2� a0 ¼ 0 ðA:37Þ

am ¼
Pe2

4
am�2 þ Peam�3

ðr þ mÞðr þ m� 1Þ � Xn2
ðm ¼ 3; 4; 5; . . .Þ

ðA:38Þ
By inserting the value for the coefficients into (A.26) the

general solution is obtained as

ZðrD; n; sÞ ¼ b1Z1ðrD; n; sÞ þ b2Z2ðrD; n; sÞ ðA:39Þ

where Z1ðrD; n; sÞ and Z2ðrD; n; sÞ are two linearly inde-

pendent functions that have the form given in (A.26),

with coefficients determined by (A.36)–(A.38) and set
r ¼ r1 or r ¼ r2, respectively.

Particular solutions can be obtained by straightfor-

ward application of boundary conditions (A.15) and

(A.16) to the general solution given by (A.25) and

(A.39). Thus, the Laplace-finite Fourier cosine trans-

form power series solution may be written as

W ðrD;n;sÞ¼exp
Pe
2
ð1

�
�rDÞ

�

� �UðSP21�AP22ÞZ1ðrD;n;sÞþUðSP11�AP12ÞZ2ðrD;n;sÞ
ðSP11�AP12ÞðTQ21þAQ22Þ�ðSP21�AP22ÞðTQ11þAQ12Þ

ðA:40Þ

where

S ¼ 1

2
þ lWs
T ¼ 1

2

U ¼ F ðnÞ

P11 ¼ Z1ðrWD; n; sÞ

P21 ¼ Z2ðrWD; n; sÞ

P12 ¼
oZ1ðrWD; n; sÞ

orD

P22 ¼
oZ2ðrWD; n; sÞ

orD

Q11 ¼ Z1ð1; n; sÞ

Q21 ¼ Z2ð1; n; sÞ

Q12 ¼
oZ1ð1; n; sÞ

orD

Q22 ¼
oZ2ð1; n; sÞ

orD

Solutions in the original domain CðrD; h; tDÞ are the La-
place and finite Fourier cosine inversion of W ðrD; n; sÞ.
The finite Fourier cosine inverse transform is performed
first. In addition, the Laplace inverse of (A.40) has to be

determined numerically. A FORTRAN subroutine,

DINLAP/INLAP, provided by IMSL Subroutine Li-

brary [18] and based on the de Hoog et al. [6] algorithm,

is employed to perform the numerical Laplace inversion.
Appendix B

Tables 3–8 present the computed values of the func-

tion, Z2ðrD; n; sÞ, and its first derivatives with respect to

rD, oZ2ðrD; n; sÞ=orD for various n and rD values when s is
fixed at 3.
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